I am finding the number of homomorphisms $f:S_3 \to S_3$ when $\ker(f)=(1)$.
By first isomorphism theorem, $$S_3/Ker(f)=S_3/(1) \simeq f(S_3)\subset S_3.$$i.e, $f:S_3 \to S_3$in this case. Now any element $x \in S_3$ goes to $f(x) \in f(S_3)=S_3$. Also $O(f(x)) |O(x)$.
The $identity$ permutation $(1)$ maps to $(1)$ as $1|1$;
order $2$ elements maps to order $2$ elements, i.,e., $\{(12),(13),(23) \} \to \{(12),(13),(23) \}$ in $3!=6$ ways.
But the problem occurs with the order $3$ elements, $(132)$ and $(123)$.
We can have $f((123))=(123)$ or $f((123))=(132)$ and $f((132))=(132)$ or $f((132))=(132)$.
So here total $2!$ ways.
Hence total $6 \times 2=12$ homomorphisms from $S_3 \to S_3$ if $\ker(f)=(1)$.
Is it true?
Edit: Why we cannot get $f((123))=(132)$ or $f((132))=(123)$ ?