For the power series representation of, $f(x) = \frac{1+x}{1-x}$ which is $1 + 2 \sum_{n=1}^\infty x^n$, Where does the added $1$ in front come from? How do I get to this answer from $\sum_{n=0}^\infty x^n + \sum_{n=0}^\infty x^{n+1}$
-
The $1$ in front isn't added in, it is just the value you get by putting $x=0$. And in you final expression, this value is present on the left (since $0^0=1$) but not on the right. – Marc van Leeuwen Apr 17 '13 at 05:53
3 Answers
$$f(x)=\frac{1+x}{1-x}=(1+x)\frac{1}{1-x}$$ $$=(1+x)\sum_{n=0}^{\infty}x^n=\sum_{n=0}^{\infty}x^n+x\sum_{n=0}^{\infty}x^n=$$ $$=\sum_{n=0}^{\infty}x^n+\sum_{n=0}^{\infty}x^{n+1}$$ because $$\sum_{n=0}^{\infty}x^n=x^0+\sum_{n=1}^{\infty}x^n=1+\sum_{n=1}^{\infty}x^n$$ and $$\sum_{n=0}^{\infty}x^{n+1}=\sum_{n=1}^{\infty}x^{n}$$ we get $$(1+x)\frac{1}{1-x}=1+\sum_{n=1}^{\infty}x^n+\sum_{n=1}^{\infty}x^n=$$ $$=1+2\sum_{n=1}^{\infty}x^n$$

- 16,949
-
How would you finish the problem; Where does the 1 in front come from in the final answer? – David Desharnais Apr 16 '13 at 19:29
-
2
-
The first sum is $$\sum\limits_{n=0}^\infty x^{n}=1+\sum\limits_{n=1}^\infty x^{n}.$$ By changing the summation index $k=n+1$ the second sum can be rewritten as $$\sum\limits_{n=0}^\infty x^{n+1}=\sum\limits_{k=1}^\infty x^{k}$$ thus $$\displaystyle\sum\limits_{n=0}^\infty x^{n}+\sum\limits_{n=0}^\infty x^{n+1}=1+\sum\limits_{n=1}^\infty x^{n}+\sum\limits_{k=1}^\infty x^{k}=1+2\sum\limits_{n=1}^\infty x^{n}$$

- 8,397
-
Would that not give you the answer, but with the starting index as 0 instead of 1? – David Desharnais Apr 16 '13 at 19:33
-
-
$\sum_{n=0}^{\infty} x^{n+1}=x+\sum_{n=1}^{\infty}x^{n+1}\neq 1+\sum_{n=1}^{\infty} x^{n+1}$ – Adi Dani Apr 16 '13 at 22:03
-
There are two ways to look at this. First, as you have noted, $$ \begin{align} \frac{1+x}{1-x} &=\sum_{n=0}^\infty x^n+\sum_{n=0}^\infty x^{n+1}\\ &=1+\sum_{n=1}^\infty x^n+\sum_{n=1}^\infty x^n\\ &=1+2\sum_{n=1}^\infty x^n \end{align} $$ The second is to notice that $$ \begin{align} \frac{1+x}{1-x} &=1+\frac{2x}{1-x}\\[6pt] &=1+2x\sum_{n=0}^\infty x^n\\ &=1+2\sum_{n=1}^\infty x^n \end{align} $$

- 345,667