6

For the power series representation of, $f(x) = \frac{1+x}{1-x}$ which is $1 + 2 \sum_{n=1}^\infty x^n$, Where does the added $1$ in front come from? How do I get to this answer from $\sum_{n=0}^\infty x^n + \sum_{n=0}^\infty x^{n+1}$

Micah
  • 38,108
  • 15
  • 85
  • 133
David Desharnais
  • 63
  • 1
  • 1
  • 3
  • The $1$ in front isn't added in, it is just the value you get by putting $x=0$. And in you final expression, this value is present on the left (since $0^0=1$) but not on the right. – Marc van Leeuwen Apr 17 '13 at 05:53

3 Answers3

6

$$f(x)=\frac{1+x}{1-x}=(1+x)\frac{1}{1-x}$$ $$=(1+x)\sum_{n=0}^{\infty}x^n=\sum_{n=0}^{\infty}x^n+x\sum_{n=0}^{\infty}x^n=$$ $$=\sum_{n=0}^{\infty}x^n+\sum_{n=0}^{\infty}x^{n+1}$$ because $$\sum_{n=0}^{\infty}x^n=x^0+\sum_{n=1}^{\infty}x^n=1+\sum_{n=1}^{\infty}x^n$$ and $$\sum_{n=0}^{\infty}x^{n+1}=\sum_{n=1}^{\infty}x^{n}$$ we get $$(1+x)\frac{1}{1-x}=1+\sum_{n=1}^{\infty}x^n+\sum_{n=1}^{\infty}x^n=$$ $$=1+2\sum_{n=1}^{\infty}x^n$$

Adi Dani
  • 16,949
3

The first sum is $$\sum\limits_{n=0}^\infty x^{n}=1+\sum\limits_{n=1}^\infty x^{n}.$$ By changing the summation index $k=n+1$ the second sum can be rewritten as $$\sum\limits_{n=0}^\infty x^{n+1}=\sum\limits_{k=1}^\infty x^{k}$$ thus $$\displaystyle\sum\limits_{n=0}^\infty x^{n}+\sum\limits_{n=0}^\infty x^{n+1}=1+\sum\limits_{n=1}^\infty x^{n}+\sum\limits_{k=1}^\infty x^{k}=1+2\sum\limits_{n=1}^\infty x^{n}$$

M. Strochyk
  • 8,397
3

There are two ways to look at this. First, as you have noted, $$ \begin{align} \frac{1+x}{1-x} &=\sum_{n=0}^\infty x^n+\sum_{n=0}^\infty x^{n+1}\\ &=1+\sum_{n=1}^\infty x^n+\sum_{n=1}^\infty x^n\\ &=1+2\sum_{n=1}^\infty x^n \end{align} $$ The second is to notice that $$ \begin{align} \frac{1+x}{1-x} &=1+\frac{2x}{1-x}\\[6pt] &=1+2x\sum_{n=0}^\infty x^n\\ &=1+2\sum_{n=1}^\infty x^n \end{align} $$

robjohn
  • 345,667