In THIS ANSWER and THIS ONE, I provided primers on the Dirac Delta.
The notation $\int_a^b f(t)\delta(t-c)\,dt$, $a\le b$, is interpreted to mean the functional $\langle fp_{ab},\delta_c\rangle$.
Here, $p_{ab}$ is the "rectangular pulse" function, $p_{ab}(t)=u(t-a)-u(t-b)$, and $u$ is the unit step (or Heaviside Function) where
$$u(t)=\begin{cases}1&,t>0\\\\0&,t<0\end{cases}$$
Note that there are various conventions for the value $u(0)$.
Therefore, we have
$$\begin{align}
\int_a^b f(t)\delta(t-c)\,dt&=\langle fp_{ab},\delta_c\rangle\\\\
&=\begin{cases}f(c)&,c\in(a,b)\\\\0&,c\notin [a,b]\end{cases}
\end{align}$$
Note that if $c=a$ or $c=b$, the functional is not defined.