Let $A$ be defective (= non diagonalizable). Consequently, it has a defective eigenvalue $\lambda$, with an algebraic multiplicity bigger than its geometric multiplicity. Then, there is a generalized eigenvector $\vec{u}_{m}$ of $A$, of rank $m>1$, such that $\left(A-\lambda I\right)^{m}\vec{u}_{m}=\vec{0}$ (proof). Furthermore, $\vec{u}_{m}$ generates a Jordan chain of generalized eigenvectors of $A$: For every natural number $n$, $0<n<m$, there is a generalized eigenvector $\vec{u}_{n}$, belonging to the chain, such that $\vec{u}_{n}=\left(A-\lambda I\right)^{m-n}\vec{u}_{m}\neq\vec{0}$.
For $n=2$, we have: $\vec{u}_{2}=\left(A-\lambda I\right)^{m-2}\vec{u}_{m}$. Then:
$$\left(A-\lambda I\right)^{m}\vec{u}_{m}=\vec{0}\Rightarrow\left(A-\lambda I\right)^{2}\left(A-\lambda I\right)^{m-2}\vec{u}_{m}=\vec{0}\Rightarrow\left(A-\lambda I\right)^{2}\vec{u}_{2}=\vec{0}$$
However, if $A$ is hermitian, then $A=A^{H}$ και $\left(A-\lambda I\right)^{H}=A^{H}-(\lambda I)^{H}=A-\lambda^{*}I^{H}$ (where $\lambda^{*}$ is the complex conjugate of $\lambda$). But, since hermitian matrices have real eigenvalues, $\lambda^{*}=\lambda$ and $I^{H}=I$, because the identity matrix is hermitian. So, $\left(A-\lambda I\right)$ is also hermitian: $\left(A-\lambda I\right)=\left(A-\lambda I\right)^{H}$. Thus: $$\left(A-\lambda I\right)^{2}\vec{u}_{2}=\left(A-\lambda I\right)\left[\left(A-\lambda I\right)\vec{u}_{2}\right]=\left(A-\lambda I\right)^{H}\left[\left(A-\lambda I\right)\vec{u}_{2}\right]=\vec{0}$$
Multiplying from the left, with $\vec{u}_{2}^{H}$, both sides of the last equality, we get:
$$\left[\vec{u}_{2}^{H}\left(A-\lambda I\right)^{H}\right]\left[\left(A-\lambda I\right)\vec{u}_{2}\right]=\left[\left(A-\lambda I\right)\vec{u}_{2}\right]^{H}\left[\left(A-\lambda I\right)\vec{u}_{2}\right]=\left|\left(A-\lambda I\right)\vec{u}_{2}\right|^{2}=\vec{u}_{2}^{H}\vec{0}=0$$
This means that $\left(A-\lambda I\right)\vec{u}_{2}=\vec{u}_{1}=\vec{0}$, which contradicts the condition stated above, that, for every $n\in\mathbb{N}$, $1\leq n<m$, $\vec{u}_{n}=\left(A-\lambda I\right)^{m-n}\vec{u}_{m}\neq\vec{0}$. So, either $A$ is not defective, or is not hermitian.