Suppose $X_1, X_2, \dots, X_n$ are i.i.d r.v.s with exponential distribution $E(\lambda) $. Let $S_n = X_1 + \dots + X_n$. Compute:
- $\mathbb{E}(S_n|X_1)$
- $\mathbb{E}(S_n^2|X_1)$
- $\mathbb{E}(S_n|S_k)$ where $n \geq k$
I think I got the first part: $$ \mathbb{E}(S_n|X_1) = \mathbb{E}(X_1 + \dots + X_n|X_1) = \mathbb{E}(X_1|X_1) + \mathbb{E}(X_2|X_1) + \dots + \mathbb{E}(X_n|X_1) $$ Now, $\mathbb{E}(X_1|X_1)$ is just $X_1$. The rest $n-1$ components will have the same value, namely if X, Y are i.i.d.:
$$ \mathbb{E}(X|Y) = \int_\mathbb{R} x g_{x|Y}dx = \int_0^{\infty} x \frac{\lambda^2e^{-\lambda (x + y)}}{\lambda e^{-\lambda y}} dx = \int_0^{\infty} x \lambda e^{-\lambda x }dx = \mathbb{E}X = \frac{1}{\lambda} $$
So finally $$ \mathbb{E}(S_n|X_1) = X_1 + \frac{n-1}{\lambda} $$
Is that a correct answer? How can I proceed with the next parts?