Statement
The product topology $\mathcal{P}$ on $\Bbb{R}^n$ is equivalent to euclidean topology $\mathcal{E}$, where $n\in\Bbb{N}$.
Proof. Let be $(a_1,b_1)\times...\times(a_n,b_n)$ a basic open set on $\Bbb{R}^n$ equipped with product topology $\mathcal{P}$. So for any $x\in(a_1,b_1)\times...\times(a_n,b_n)$ we define $$ A=\{b_i-x_i: i=1,...,n\} $$ and $$ B=\{x_i-a_i: i=1,...,n\} $$ ad so let be $$ \rho:=\min(A\cup B) $$ therefore it follows that $\rho\le b_i-x_i$ and $\rho\le x_i-a_i$ for any $i=1,...,n$. So for any $y\in B(x,\rho)$ and for any $i=1,...,n$ it follows that $$ (y_i-x_i)^2\le\sum_{j=1}^n(y_j-x_j)^2<\rho^2\le(b_i-x_i)^2 $$ and $$ (x_i-y_i)^2\le\sum_{j=1}^n(x_j-y_j)^2<\rho^2\le(x_i-a_i)^2 $$ and so clearly $y_i\in(a_i,b_i)$ for any $i=1,...,n$, that is $y\in(a_1,b_1)\times...\times(a_n,b_n)$. So we conclude that $\mathcal{P}\subseteq\mathcal{E}$.
Now let be $B(x,\rho)$ a basic open set on $\Bbb{R}^n$ equipped with euclidean topology $\mathcal{E}$ and so for any $y\in B(x,\rho)$ we consider $$ \rho'=\rho-d(x,y) $$ therefore it follows that $B(y,\rho')\subseteq B(x,\rho)$. So we choose $\epsilon>0$ such that $$ n\epsilon^2<(\rho')^2 $$ and so for any $z\in(y_1-\epsilon,y_1+\epsilon)\times...\times(y_n-\epsilon,y_n+\epsilon)$ and for any $i=1,...,n$ it follows that $$ y_i-\epsilon<z_i<y_i+\epsilon $$ and so we conclude that $$ |(z_i-y_i)|<\epsilon $$ thus if we squaring and if we sum then it follows that $$ \sum_{i=1}^n(z_i-y_i)^2<n\cdot\epsilon^2\le(\rho')^2 $$ and so it follows that $z\in B(x,\rho)$. So we conclude that $\mathcal{E}\subseteq\mathcal{P}$.
Finally $\mathcal{P}=\mathcal{E}$.
So I ask if my proof is correct. Then I ask if the statement is even true for $\Bbb{R}^k$, where $k$ is an infinite cardinal, in the case it is possible to define the euclidean metric if $k>\omega$: so if this is true could you prove it? if not, could you take a counterexample?