I can prove it converges but I don't know at what value it converges. $\sum_{x=1}^{\infty} \frac{(x-1)}{2^{x}}$
-
Asked zillion times. Try $\sum_{x=1}^{\infty}a_x=\sum_{x=0}^{\infty}a_{x+1}$ and see the connection. – metamorphy Apr 18 '20 at 18:57
-
Your series is a minor modification of a special case of $\sum_{n=1}^\infty na^n$; the answers to this question illustrate a considerable variety of approaches. – Brian M. Scott Apr 18 '20 at 19:38
3 Answers
because all the summands are nonnegative you can actually rearrange the sum like this:$$\sum_{x=1}^\infty \frac{x-1}{2^x}= \sum_{k=2}^\infty \underbrace{ \sum_{x=k}^\infty \frac{1}{2^x}}_{=\frac{1}{2^{k-1}}}$$

- 40,625

- 1,114
Start with (for $\lvert u \rvert < 1$ the geometric series converges absolutely, we'll use $u = 1/2$ in the end, so all the manhandling is justified):
$\begin{align*} \sum_{x \ge 1} u^x &= \frac{u}{1 - u} \\ \frac{d}{d u} \sum_{x \ge 1} u^x &= \frac{1}{(1 - u)^2} \\ \sum_{x \ge 1} x u^{x - 1} &= \\ \sum_{x \ge 1} x u^x &= \frac{u}{(1 - u)^2} \\ \sum_{x \ge 1} (x - 1) u^x &= \frac{u}{(1 - u)^2} - \frac{u}{1 - u} \\ &= \frac{u^2}{(1 - u)^2} \end{align*}$
Now replace $u = 1/2$ and get:
$\begin{align*} \sum_{x \ge 1} \frac{x - 1}{2^x} &= \frac{(1/2)^2}{(1 - 1/2)^2} \\ &= 1 \end{align*}$

- 27,812