0

Can you help me with that:

Why is $\int_{-\infty}^\infty |\text{sinc}(t)|\ dt=\infty$ ?

I saw this in Signal Processing course and I can’t understand why this is true.

Reference: https://dsp.stackexchange.com/a/1033/49921

Didn’t find any relevant material unfortunately.

1 Answers1

3

$$ \int_0^{+\infty}\frac{|\sin(t)|}{t}dt=\sum_{n=0}^{+\infty}\int_{n\pi}^{(n+1)\pi}\frac{|\sin(t)|}{t}dt=\sum_{n=0}^{+\infty}\int_0^{\pi}\frac{|\sin u|}{u+n\pi}du \\ \geqslant \int_0^{\pi}|\sin u|du\sum_{n=0}^{+\infty}\frac{1}{(n+1)\pi}=\frac{2}{\pi}\sum_{n=1}^{+\infty}\frac{1}{n}=+\infty $$

Gary
  • 31,845
Tuvasbien
  • 8,907