Another way to do it :
Define on $ \mathbb{R}_{+} $, a function $ f $ as follows : $$ \left(\forall t\in\mathbb{R}_{+}\right),\ f\left(t\right)=\int_{0}^{+\infty}{\frac{x-\sin{x}}{x^{3}}\,\mathrm{e}^{-xt}\,\mathrm{d}x} $$
Since $ \left(\forall x\in\mathbb{R}_{+}^{*}\right),\ t\mapsto\frac{x-\sin{x}}{x^{3}}\,\mathrm{e}^{-xt} $ is continuous on $ \mathbb{R}_{+} $, and $ \left(\forall a,b\in\mathbb{R}_{+}\right)\left(\forall\left(t,x\right)\in\left[a,b\right]\times\mathbb{R}_{+}^{*}\right),\ \frac{x-\sin{x}}{x^{3}}\,\mathrm{e}^{-xt}\leq\frac{x-\sin{x}}{x^{3}} $, with $ \varphi:x\mapsto\frac{x-\sin{x}}{x^{3}} $ being integrable on $ \mathbb{R}_{+}^{*} $, we conclude that $ f $ is continuous on $ \mathbb{R}_{+} \cdot $
Now since : $$ \left(\forall x\in\mathbb{R}_{+}^{*}\right),\ \frac{x-\sin{x}}{x^{3}}=\frac{1}{2}\int_{0}^{1}{\left(1-y\right)^{2}\cos{\left(xy\right)}\,\mathrm{d}y} $$
We have, for any $ t\in\mathbb{R}_{+}^{*} $, the following : \begin{aligned}f\left(t\right)&=\frac{1}{2}\int_{0}^{+\infty}{\int_{0}^{1}{\left(1-y\right)^{2}\cos{\left(xy\right)}\,\mathrm{e}^{-xt}\,\mathrm{d}y}\,\mathrm{d}x}\\ &=\frac{1}{2}\int_{0}^{1}{\left(1-y\right)^{2}\int_{0}^{+\infty}{\cos{\left(xy\right)}\,\mathrm{e}^{-xt}\,\mathrm{d}x}\,\mathrm{d}y}\\ &=\frac{t}{2}\int_{0}^{1}{\frac{\left(1-y\right)^{2}}{t^{2}+y^{2}}\,\mathrm{d}y}\\ &=\frac{t}{2}+\frac{1-t^{2}}{2}\int_{0}^{1}{\frac{\frac{1}{t}}{1+\left(\frac{y}{t}\right)^{2}}\,\mathrm{d}t}-\frac{t}{2}\int_{0}^{1}{\frac{2y}{t^{2}+y^{2}}\,\mathrm{d}y}\\ f\left(t\right)&=\frac{t}{2}+\frac{1-t^{2}}{2}\arctan{\left(\frac{1}{t}\right)}-\frac{t}{2}\ln{\left(1+t\right)}+t\ln{t}\end{aligned}
Since $ \lim\limits_{t\to 0}{f\left(t\right)}=\frac{\pi}{4} $, and $ f $ is continuous on $ \mathbb{R}_{+} $, we have $ f\left(0\right)=\frac{\pi}{4} $, and thus : $$ \int_{0}^{+\infty}{\frac{x-\sin{x}}{x^{3}}\,\mathrm{d}x}=\frac{\pi}{4} $$