I've got an infinite power series for $\int{x^x}{dx}$ over $x>0$ and I suspect it might have this form:
$$\int{x^x}{dx} = \sum_{n=1}^{\infty}{\frac{x^n}{A(n)}}\sum_{k=0}^{n-1}{B(n,k) \log^k(x)}$$ $$A(n)=\mathrm{lcm}(n^n,n!)$$ $$B(n,k)=\begin{cases}(-1)^{1+n+k}\times\frac{n!\times n^k}{\gcd(n^n,n!)\times k!} & n > k\\0 & \mathrm{otherwise}\end{cases}$$
The first bunch of terms in the sum look like this: $$x +\frac{x^2}{4} (-1 + 2 \log(x)) +\frac{x^3}{54} (2 - 6 \log(x) + 9 \log^2(x)) +\frac{x^4}{768} (-3 + 12 \log(x) - 24 \log^2(x) + 32 \log^3(x)) +\frac{x^5}{75000}((24 - 120 \log(x) + 300 \log^2(x) - 500 \log^3(x) + 625 \log^4(x))) + \dots $$
I checked OEIS and the terms followed patterns related to A055774, A051696, and A095996.
Is anybody aware of any existing derivation of this series and if not, how can I go about proving the general formula is correct and converges to the integral over $x>0$? I've checked using Mathematica to produce the terms. It matches out to 20 terms so far but I'm not sure what to do next to verify it as $n\rightarrow\infty$.
denom[n_] := LCM[n!, n^n]
logterm[n_, k_] :=
If[n > k, (-1)^(k + n + 1) Denominator[n^n/n!]*n^k/k!, 0]
myseries[x_, n_] :=
Sum[x^i/denom[i] Sum[logterm[i, j]*Log[x]^j, {j, 0, i - 1}], {i, 1,
n}]
(* evaluate and compare *)
Normal[Series[Integrate[x^x, x], {x, 0, 20}]] == myseries[x,20]
A related question Finding $\int x^xdx$ explores this integral but it does not feature this particular power series expansion.
-- edit -- I realized the $\mathrm{lcm}(n^n,n!)$ in $A(n)$ can be pulled into the inner sum combining with the $\gcd(n^n,n!)$ in $B(n,k)$ as $n^n \times n!$ so this simplifies things a bit and the series is now: $$ \int{x^x}{dx} = \sum_{n=1}^{\infty}{x^n}\sum_{k=0}^{n-1}{B(n,k) \log^k(x)} \\ B(n,k)=\begin{cases}(-1)^{1+n+k}\times\frac{n^{k-n}}{k!} & n > k\\0 & \mathrm{otherwise}\end{cases} $$