Show that the shortest distance between the opposite edges of a regular tetrahedron is $ \frac{1}{2} \sqrt{2} \alpha $ when the length of each side is $ \alpha $.
What I've done so far:
Take the vertices to be $ O=(0,0,0), A =(\alpha,0,0), B=(\frac{\alpha}{2},\alpha\frac{\sqrt3}{2},0). $
Take $ \hat i $ in the direction of $ OA $, $ OBA\ $ lying in the $ Oxy $ plane with $ \hat{j} $ in the direction of $ Oy $ and $ \hat{k} $ perpendicular to $ Oxy $ plane.
Then the other vertex will have coordinates $ C=(\frac{\alpha}{2}, \frac{\alpha}{2 \sqrt{3}},\alpha) $.
The vector equation of $ BC= \frac{\alpha}{2}\hat{i}+\frac{\alpha \sqrt{3}}{2} \hat{j}+\lambda (-\frac{\sqrt{3}\alpha}{2} \hat{j} + \alpha\hat{k}). $ $ OA = \alpha \hat{i}. $
$ OA \land BC = -\alpha^2\hat{j}+ \frac{\alpha^2}{2 \sqrt{3}} \hat{j}. $ Taking the dot product of $ \frac{\alpha}{2}\hat{i}+ \frac{\alpha \sqrt{3}}{2} \hat{j} $ and this vector would not give the required answer ( $ \land $ denotes the cross product. )
Please help. Thank you in advance.