Working with a Smaller Denominator
Note that
$$
\begin{align}
\sum_{z^{11}=1}\frac1{z^8+z+1}
&=\sum_{z^{11}=1}\frac{z^3}{z^4+z^3+1}\\
\end{align}
$$
Furthermore,
$$
\begin{align}
p(z)
&=\frac{z^{44}+12z^{33}+44z^{22}+11z^{11}+1}{z^4+z^3+1}\\
&=z^{40}-z^{39}+z^{38}-z^{37}+z^{35}-2z^{34}+3z^{33}-3z^{32}+2z^{31}\\
&\phantom{=\ }+9z^{29}-6z^{28}+4z^{27}-4z^{26}-5z^{25}+11z^{24}-15z^{23}+19z^{22}-14z^{21}\\
&\phantom{=\ }+3z^{20}+12z^{19}+13z^{18}+z^{17}-4z^{16}-8z^{15}-5z^{14}+4z^{13}+8z^{11}\\
&\phantom{=\ }-3z^{10}-z^9+z^8+2z^7+z^6-z^4-z^3+1\\
&\equiv-20z^{10}+4z^9+13z^8+25z^7-5z^6+z^5-14z^4-11z^3+16z^2-17z+31\\
&=q(z)\quad\left(\text{mod }z^{11}-1\right)
\end{align}
$$
Thus,
$$
\begin{align}
\sum_{z^{11}=1}\frac{69\,z^3}{z^4+z^3+1}
&=\sum_{z^{11}=1}\frac{\left(z^{44}+12z^{33}+44z^{22}+11z^{11}+1\right)z^3}{z^4+z^3+1}\\[3pt]
&=\sum_{z^{11}=1}q(z)z^3\\
&=11\left[z^8\right]q(z)\\[9pt]
&=143
\end{align}
$$
which means
$$
\sum_{z^{11}=1}\frac{z^3}{z^4+z^3+1}=\frac{143}{69}
$$
Subtracting $\frac13$ for the $z=1$ term, we get an answer of
$$
\sum_{\substack{z^{11}=1\\z\ne1}}\frac1{z^8+z+1}=\frac{40}{23}
$$
Using the Extended Euclidean Algorithm
It finally dawned on me that what we are looking for is
$$
\frac1{z^8+z+1}\quad\left(\text{mod }x^{11}-1\right)
$$
and the easiest way to get that is with the Extended Euclidean Algorithm. Using Mathematica, the command
PolynomialExtendedGCD[z^11-1,z^8+z+1,z]
returns
{1,{1/69(-56+17z-16z^2+11z^3+14z^4-z^5+5z^6-25z^7),
1/69(13+4z-20z^2+31z^3-17z^4+16z^5-11z^6-14z^7+z^8-5z^9+25z^10)}}
which says that
$$
\bbox[5px,border:2px solid #C0A000]{\textstyle\frac1{z^8+z+1}\equiv\frac{25z^{10}-5z^9+z^8-14z^7-11z^6+16z^5-17z^4+31z^3-20z^2+4z+13}{69}\quad\left(\text{mod }z^{11}-1\right)}
$$
Using the algorithm outlined in this answer, and applying it to polynomials, we can see what Mathematica did:
$$
\begin{array}{|c|c|c|c|c|}
\hline{\begin{array}{c}\text{linear combination}\\[-6pt]\text{of $z^{11}-1$}\\[-6pt]\text{and $z^8+z+1$}\end{array}}&\text{coefficient of $z^{11}-1$}&\text{coefficient of $z^8+z+1$}&{\begin{array}{c}\text{quotient of}\\[-6pt]\text{the previous two}\\[-6pt]\text{linear combinations}\end{array}}\\\hline
z^{11}-1&1&0\\
z^8+z+1&0&1\\
-z^4-z^3-1&1&-z^3&z^3\\
z^3-z^2+2z+1&z^4-z^3+z^2-z&-z^7+z^6-z^5+z^4+1&-z^4+z^3-z^2+z\\
5z+1&z^5+z^4-z^3+z^2-2z+1&-z^8-z^7+z^6-z^5+2z^4-z^3+z+2&-z-2\\
\color{#090}{\frac{69}{125}}&\frac{-25z^7+5z^6-z^5+14z^4+11z^3-16z^2+17z-56}{125}&\color{#C00}{\frac{25z^{10}-5z^9+z^8-14z^7-11z^6+16z^5-17z^4+31z^3-20z^2+4z+13}{125}}&\frac{25z^2-30z+56}{125}\\
\textstyle 0&\frac{125}{69}\left(z^8+z+1\right)&-\frac{125}{69}\left(z^{11}-1\right)&\frac{125}{69}(5z+1)\\\hline
\end{array}
$$
The first two rows are given.
Each new row is computed by computing the rightmost element as the quotient of the leftmost elements in the previous two rows. The other elements are computed by subtracting the quotient just computed times the previous row from the row prior to that.
The colored elements in the table above say that
$$
\textstyle\frac{\color{#090}{\frac{69}{125}}}{z^8+z+1}\equiv\color{#C00}{\frac{25z^{10}-5z^9+z^8-14z^7-11z^6+16z^5-17z^4+31z^3-20z^2+4z+13}{125}}\quad\left(\text{mod }z^{11}-1\right)
$$
Dividing by the green term, we get the boxed result we got from Mathematica.