My proof:
$$ \begin{array} \\ \text{1.} & \overline A \cup B =U & premise \\ 2. & x \in U \leftrightarrow(x \in A) \land x \in (\overline A \cup B) & premise \\3. &x \in A &from \ (2) \\ 4. & x \in (\overline A \cup B) \equiv \lnot(x \in A) \lor (x \in B) \equiv x \in A \rightarrow x \in B & from \ (2) \\ 5. & x \in B & mp \ from \ (3),(4) \\ 6. & A \subseteq B &from \ (3),(4),(5) \\\hline \therefore &\overline A \cup B=U \rightarrow A \subseteq B \end{array} $$
Any critique would be helpful!