2

How the values of $\zeta'(0)=-1/2 \log⁡(2\pi)$ is calculated?

  • 2
    The Riemann zeta function is undefined at $s=1$, which also makes its derivative undefined at $s=1$. Where have you read that $\zeta'(1)=-1$? – Alvin L-B Apr 14 '20 at 19:22

1 Answers1

4

One elegant derivation of $\zeta'(0)=-\ln(2\pi)/2$ is as follows:

Consider the following representation for the Dirichlet eta function: $$\eta(s)=\frac{1}{2}+\frac{1}{2}\left[\left(\frac{1}{1^s}-\frac{1}{2^s}\right)-\left(\frac{1}{2^s}-\frac{1}{3^s}\right)+\left(\frac{1}{3^s}-\frac{1}{4^s}\right)-...\right],$$ which holds for $\text{Re}(s)>-1$.

Differentiating termwise (which, if we were more rigorous, would have to be motivated by showing uniform convergence) gives: \begin{align*} \eta'(s)&=\frac{1}{2}\left[\left(-\frac{\ln(1)}{1^s}+\frac{\ln(2)}{2^s}\right)-\left(-\frac{\ln(2)}{2^s}+\frac{\ln(3)}{3^s}\right)+\left(-\frac{\ln(3)}{3^s}+\frac{\ln(4)}{4^s}\right)-...\right]\\ &=\frac{1}{2}\left[\left(-\frac{\ln(1)}{1^s}+\frac{\ln(2)}{2^s}\right)+\left(\frac{\ln(2)}{2^s}-\frac{\ln(3)}{3^s}\right)+\left(-\frac{\ln(3)}{3^s}+\frac{\ln(4)}{4^s}\right)+...\right]\\ &=\frac{1}{2}\left[-\ln(1^{1^{-s}})+\ln(2^{2^{-s}})+\ln(2^{2^{-s}})-\ln(3^{3^{-s}})-\ln(3^{3^{-s}})+\ln(4^{4^{-s}})+...\right]\\ &=\frac{1}{2}\ln\left(\frac{2^{2^{-s}}}{1^{1^{-s}}}\cdot\frac{2^{2^{-s}}}{3^{3^{-s}}}\cdot\frac{4^{4^{-s}}}{5^{5^{-s}}}\cdot\frac{4^{4^{-s}}}{7^{7^{-s}}}\cdot...\right) \end{align*} Now, letting $s=0$, we can make use of the Wallis product to obtain $$\eta'(0)=\frac{1}{2}\ln\left(\frac{2}{1}\cdot\frac{2}{3}\cdot\frac{4}{5}\cdot\frac{4}{7}\cdot...\right)=\frac{1}{2}\ln\left(\frac{\pi}{2}\right).$$ Now we differentiate the relation $$\eta(s)=(1-2^{1-s})\zeta(s),$$ which gives us $$\eta'(s)=2^{1-s}\ln(2)\zeta(s)+(1-2^{1-s})\zeta'(s).$$ Solving for $\zeta'(s)$ leads to $$\zeta'(s)=\frac{\eta'(s)-2^{1-s}\ln(2)\zeta(s)}{1-2^{1-s}}.$$ Setting $s=0$ and recalling that $\zeta(0)=-\frac{1}{2}$ finally leaves us with \begin{align*} \zeta'(0)&=\frac{\frac{1}{2}\ln(\frac{\pi}{2})-2\ln(2)(-\frac{1}{2})}{1-2}\\ &=-\left(\frac{\ln(\frac{\pi}{2})}{2}+\ln(2)\right)\\ &=-\left(\frac{\ln(\frac{\pi}{2})+\ln(4)}{2}\right)\\ &=-\frac{1}{2}\ln(2\pi). \end{align*}


Here is a derivation of the above representation for $\eta(s)$ for those interested.

Recall the regular series for $\eta(s)$: $$\eta(s)=\frac{1}{1^s}-\frac{1}{2^s}+\frac{1}{3^s}-\frac{1}{4^s}+...$$ convergent for $\text{Re}(s)>0$. We can split each term as follows: \begin{align*} \eta(s)&=\left(\frac{1}{2\cdot 1^s}+\frac{1}{2\cdot1^s}\right)-\left(\frac{1}{2\cdot2^s}+\frac{1}{2\cdot2^s}\right)+\left(\frac{1}{2\cdot3^s}+\frac{1}{2\cdot3^s}\right)-...\\ &=\frac{1}{2}\left[\left(\frac{1}{1^s}+\frac{1}{1^s}\right)-\left(\frac{1}{2^s}+\frac{1}{2^s}\right)+\left(\frac{1}{3^s}+\frac{1}{3^s}\right)-...\right]. \end{align*} Regrouping consecutive terms (which does not require absolute convergence, only convergence) then gives: \begin{align*} \eta(s)&=\frac{1}{2}\left[\frac{1}{1^s}+\left(\frac{1}{1^s}-\frac{1}{2^s}\right)+\left(-\frac{1}{2^s}+\frac{1}{3^s}\right)+\left(\frac{1}{3^s}-\frac{1}{4^s}\right)+...\right]\\ &=\frac{1}{2}+\frac{1}{2}\left[\left(\frac{1}{1^s}-\frac{1}{2^s}\right)-\left(\frac{1}{2^s}-\frac{1}{3^s}\right)+\left(\frac{1}{3^s}-\frac{1}{4^s}\right)+...\right]. \end{align*} This shows that the representation at least holds for $\text{Re}(s)>0$ (since that is the convergence of the original series), but it in fact holds for all $\text{Re}(s)>-1$ aswell. One might wonder why it is the case that the values of the infinite series in the interval $-1<\text{Re}(s)\leq0$ (where the derived series converges but not the original) indeed equal $\eta(s)$. However, if we recall that there is a unique analytic continuation to the Dirichlet eta function (as with the Riemann zeta function), and observe that our series is indeed analytic, we can conclude that the series must equal $\eta(s)$ for all $\text{Re}(s)>-1$.

Alvin L-B
  • 417
  • Elegant indeed! Thanks a lot. – Arwashan Apr 15 '20 at 13:26
  • Remained to prove that the rearrangement of the terms of η(s) is true when 0≤s<1 Any suggestion about the technique of proving that? Another point, η(s) is conditionally convergent when 0≤s<1 not -1<s<1 right? – Arwashan Apr 15 '20 at 13:38
  • Upon closer inspection, I realized that you don't need to rearrange terms in order to obtain the series we used, only regroup consecutive terms, which we are allowed to do for any convergent series, including conditionally convergent series. – Alvin L-B Apr 15 '20 at 20:56
  • I edited my answer with a derivation of the series. – Alvin L-B Apr 16 '20 at 05:57
  • Great, thanks again. – Arwashan Apr 16 '20 at 12:40