Interesting question, of course there are several ways to solve the problem, one of them is the following :
Let $||.||$ be a norm on $\mathbb{R}^d$.
First, we will prove that $(K_{X_n})_n$ converges, we can prove this by verifying that each element $k_n^{i,j}$ in $K_{X_n}$ converges, and since $K_{X_n}$ is symmetric we have $$\forall x,y\in \mathbb{R}^d, \ ^txK_{X_n}y= \frac{1}{4}(\ ^t(x+y)K_{X_n}(x+y)-\ ^t(x-y)K_{X_n}(x-y)),$$ so it's sufficient to prove that for all $x \in \mathbb{R}^d, (\ ^txK_{X_n}x)_n$ converges. We can find $\eta>0$ such that for all $x \in \mathbb{R}^d,||x||\leq\eta \implies\ |\varphi_X(\eta)|\geq\frac{1}{2}$.(Since $\varphi_X$ is continuous at $0$)
Take $x \in \mathbb{R}^d.$ Since $\frac{||\eta x||}{||x||+1}\leq\eta,$ then we have $\lim_n|\varphi_{X_n}(\frac{x\eta}{||x||+1})|=\lim_ne^{-\frac{1}{2(||x||+1)^2}\eta^2 \ ^txK_{X_n}x}=|\varphi_X(\frac{\eta x}{||x||+1})|,$ which means that $\lim_n \ ^txK_{X_n}x=-\frac{2(||x||+1)^2}{\eta^2}\ln(|\varphi_X(\frac{\eta x}{||x||+1})|),$ we conclude that each element $k^{i,j}_n$ in $K_{X_n}$ converges, so let $K:=\lim_nK_{{X_n}}.$
Now we will prove that $(E[X_n])_n$ is convergent. As above we will work element by element, but first notice that $\forall x \in \mathbb{R}^d,e^{i \ ^txE[X_n]}=\varphi_{X_n}(x)e^{\frac{1}{2} \ ^txK_{X_n}x},$ then $\lim_n\forall x \in \mathbb{R}^d,e^{i \ ^txE[X_n]}=\varphi_{X}(x)e^{\frac{1}{2} \ ^txKx}:=h(x).$
$h$ is continuous at $0,$ which mean that $\exists \delta>0,\forall x \in \mathbb{R}^d,||x||\leq \delta \implies |h(x)|\geq\frac{1}{2}.$
Let $x \in \mathbb{R}^d$, $$\forall 0<y<\delta,\frac{||yx||}{||x||+1}\leq\delta,$$
then we will have $$\int_{0}^{\delta}h(\frac{yx}{||x||+1})dy\geq \frac{\delta}{2}>0,$$
and finally since $$\frac{i \ ^txE[X_n]}{||x||+1}\int_0^\delta exp(\frac{iy \ ^txE[X_n]}{||x||+1})dy=exp(\frac{i\delta \ ^txE[X_n]}{||x||+1})-1,$$ by dominated convergence theorem we have $$\lim_n\int_0^\delta exp(\frac{iy \ ^txE[X_n]}{||x||+1})dy=\int_0^\delta h(\frac{yx}{||x||+1}) \neq0$$ we deduce the convergence of $^txE[X_n],$ and of course $X$ is a gaussian vector with mean $\lim_n E[X_n]$ and covariance matrix $K$