I've been doing some work with cardinality of sets, and ran into an example I thought was interesting. In proving that the set of prime numbers is a countably infinite set, I've started that showing that the set of prime numbers (integers) $\mathbb{P}$ is a subset of $\mathbb{N}$. Obviously the natural numbers $\mathbb{N}$ can be mapped one-to-one to itself ($1$ to $1$, $2$ to $2$, etc.), so it is a countably infinite set. Following from this, since $\mathbb{P}$ is a subset of a countably infinite set $\mathbb{N}$, then $\mathbb{P}$ must be a countably infinite set as well.
Is this enough information to show $\mathbb{P}$ is a countably infinite set, or must I show a concrete mapping for $\mathbb{P}$?