The questions is
If $f(u,v,w)$ is differentiable and $u=x-y$, $v=y-z$, and $w=z-x$, show that $$\begin{equation} \frac{\partial{f}}{\partial{x}}+\frac{\partial{f}}{\partial{y}}+\frac{\partial{f}}{\partial{z}}=0 \end{equation}$$
The things that I could only get is $$\begin{equation} \frac{\partial{f}}{\partial{x}}+\frac{\partial{f}}{\partial{y}}+\frac{\partial{f}}{\partial{z}}=\frac{\partial{f}}{\partial{u}}+\frac{\partial{f}}{\partial{v}}+\frac{\partial{f}}{\partial{w}} \end{equation}$$
At that point, I even don`t know what $f(x)$ is....so how can I get the answer?