What $z\in \mathbb{C}$ satisfy \begin{eqnarray*} \wp(z) = \wp(nz) \end{eqnarray*} if $n\in \mathbb{N}$?
The Weierstrass p-function is defined as \begin{eqnarray*} \wp(z)=\frac{1}{z^2}+\sum_{\omega\in \Lambda^*}\left( \frac{1}{(z-\omega)^2}-\frac{1}{\omega^2}\right) \end{eqnarray*} where $\Lambda^*$ is the lattice for complex numbers $\omega_1$ and $\omega_2$ excluding zero.