$a,b \in \mathbb{N} $, $ a b \mid a^2 + b^2$ We need to prove that is a=b ?
Solution: From $ab\mid a^2 + b^2$ $\rightarrow$ $a^2+b^2=k\cdot ab$
then
$$ a^2+b^2=k\cdot ab \quad /\cdot \frac{1}{a} $$ $$ a^2+b^2=k\cdot ab \quad /\cdot \frac{1}{b} $$
we have
$$a+\frac{b^2}{a}=kb$$ $$\frac{a^2}{b}+b=ka $$
Now, we have that from first equation how $a,kb \in \mathbb{N}$ then $\frac{b^2}{a} \in \mathbb{N}$ then $a\mid b^2$ and finally why from this we have that $a\mid b$ ? That part I can't understand.