- Prove that if $\operatorname{gcd}(a, b)=1$ then $\operatorname{gcd}(a c, b)=\operatorname{gcd}(c, b).$
My Attempt. Assume $\operatorname{gcd}(a, b)=1,$ then $1|a$ and $1|b.$ Let $\operatorname{gcd}(c, b)=d$, that is $d|c$ and $d|b$ whenever an integer $d'|c$ and $d'|b$, we have $d'|d.$ We need to show $\operatorname{gcd}(ac, b)=d.$ Since $1|a$ and $d|c$, we get $d|ac.$ Now,....
How can I complete the proof? Can you help? Thanks...