This integral I got from an MIT Bee Integral contest. The actual question is:
$$\displaystyle \int_{-\infty}^{\infty} e^{-2x^2-5x-3} \mathrm dx$$
So I look at the exponent and I see the factors so why not?
$\displaystyle \int e^{-(x+1)(2x+3)} \mathrm dx$
Then I go for the substitution:
$\begin{align}u&=x+1 \\ \mathrm du&=\mathrm dx \end{align}$
So we turn this into:
$\displaystyle \int e^{-u(2u+1)} \mathrm du$
$\displaystyle \int e^{-u} \cdot e^{-2u^2} \mathrm du$
So far so good. Yet another substitution because of some potential I saw.
$\begin{align} v&=e^{-u} \\ u&=-\ln v \\ \mathrm du&= -\dfrac{1}{v} \mathrm dv \end{align}$
The next transformation is:
$\displaystyle \int v \cdot e^{-2\ln^2 v} \cdot -\dfrac{1}{v} \mathrm dv$
$=\displaystyle \int -e^{-2\ln^2 v} \mathrm dv$
This is where I saw blanks. My question is: is this even the right way to go about this? If so please help out from here, otherwise any recommendations or ideas would be appreciated.
Lastly, if the method is easy for someone with scraps of Calc 2 knowledge just leave a hint because I want to own this thing. Thanks :)