2

How to prove or disprove$$\lim_{n\to\infty}\|f_n-f\|=0\;\Rightarrow \;\lim_{n\to\infty}f_n(x)=f(x)\; a.e.?$$ Any hint is appreciated.

Julien
  • 44,791
Sam
  • 367

1 Answers1

3

This is false. For a counterexample, consider the functions $\chi_{[0,1]}$, $\chi_{[0,1/2]}$, $\chi_{[1/2,1]}$, $\chi_{[0,1/4]}$, $\chi_{[1/4,1/2]}$, $\chi_{[1/2,3/4]}$, and so on.

However, you can always extract a subsequence which does converge a.e.

Potato
  • 40,171