Question :
$\sin\beta\sin\left(\dfrac\pi3-\beta\right)\sin\left(\dfrac\pi3+\beta\right)=\frac {1}{4}\sin 3\beta$
I tried using the sine expansion but could not get it. Please help me.
Question :
$\sin\beta\sin\left(\dfrac\pi3-\beta\right)\sin\left(\dfrac\pi3+\beta\right)=\frac {1}{4}\sin 3\beta$
I tried using the sine expansion but could not get it. Please help me.
Firstly I will give you an easy exercise :
$$\sin(A+B)\sin(A-B)=\sin^2A-\sin^2B$$
Hint for the exercise :
Use the formula : $\cos(A)-\cos(B)=-2\sin(\frac{A+B}{2})\sin(\frac{A-B}{2})$.
Now, for the question :
$\sin\beta\sin\left(\dfrac\pi3-\beta\right)\sin\left(\dfrac\pi3+\beta\right)$
$=\sin\beta\left(\sin^2\left(\dfrac\pi3\right)-\sin^2\left(\beta\right)\right)$
$=\sin\beta\left(\frac{3}{4}-\sin^2\left(\beta\right)\right)$
$=\frac{\sin 3\beta }{4}$