Let $a=a_0+a_1\omega, b=b_0+b_1\omega, b\neq 0$.
Note $\omega^2=\bar{\omega}=-1-\omega$, so that the conjugate of $b$ is $\bar{b}=b_0+b_1\omega^2=b_0-b_1(1+\omega)$ and that $\vert b\vert^2=b_0^2-b_0b_1+b_1^2$.
The recipe to do Euclidean division is as follows:
Using the relations above, write $\dfrac{a}{b}=u+b\omega,u,v\in \mathbb{Q}$.
Choose $m,n\in\mathbb{Z}$ such that $\vert u-m\vert\leq \dfrac{1}{2},\vert v-n\vert\leq \dfrac{1}{2}$ (in thecase where you have two choices for $m$ or $n$, pick any of the possible choices)
Set $q=m+n\omega$ and $r=a-qb$.
A little algebra shows that $\vert r\vert^2<\vert b\vert^2$, so $q$ is a quotient of $a$ by $b$ and $r$ is a remainder.