Let $I,J$ be finite subsets of $\Bbb N$ and $(a_i):\Bbb N\to \Bbb R$
I define $\sum_{i\in I} a_i:=\sum_{k=1}^N a\_i_k$ where $N=|I|$ and $(i_k):\{1,....N\}\to I$ is strictly increasing and onto $I$.
Are the following propositions right? and how can I prove them:
"$\sum_{i\in I\setminus J} a_i=\sum_{i\in I} a_i-\sum_{i\in I\cap J} a_i$"
"$\sum_{i\in I\cup J} a_i=\sum_{i\in I} a_i+\sum_{i\in J\setminus I} a_i$"
"$\sum_{i\in I} a_i=\sum_{i\in I\cap J} a_i+\sum_{i\in I\setminus J} a_i$"