Let's suppose $R$ is a ring and $D \subset R$ is a multiplicative subset.
If we look at these two $D^{-1}R$-modules:
$D^{-1}(\operatorname{Hom}_R(M,N))$ and $\operatorname{Hom}_{D^{-1}R}(D^{-1}M,D^{-1}N)$ and consider the naturally defined homomorphism from $D^{-1}\operatorname{Hom}_R(M,N)) \rightarrow$ $\operatorname{Hom}_{D^{-1}R}(D^{-1}M,D^{-1}N)$
is there an example of $R, D, M, N$, when the homomorphism is not an isomorphism?