Let, the function $f:\mathbb N^+ \longrightarrow \mathbb R$ is given. Is it possible to define such an operator $\operatorname{\Gamma}$ that satisfies the following conditions:
For any $n\in\mathbb {N^+}$ we have
$$\operatorname{\Gamma} (f(n))=\alpha$$and
$$\displaystyle \lim_{n\to \infty} \operatorname{\Gamma} (f(n))=\beta $$
where $\alpha,\beta \in \mathbb R$ and $\alpha\neq \beta.$
Is this mathematically possible?