I have been trying to study this function of $\alpha$:
$$f(\alpha) = \int_{-\infty}^{\infty}1-e^{-\alpha e^{-\frac{1}{2}x^2}}\mathrm{d}x$$
but all I can obtain is an oscillating series, by expanding $f(\alpha)$ at $\alpha=0$,
$$f(\alpha) = \int_{-\infty}^{\infty} \left[a e^{-\frac{x^2}{2}} - \frac{1}{2} a^2 e^{-x^2} + \frac{1}{6} a^3 e^{-\frac{3x^2}{2}} - \frac{1}{24} a^4 e^{-2x^2} + \dots \right]\mathrm{d}x$$
then integrating term by term, giving,
$$f(\alpha) = a\sqrt{2 \pi } - \frac{1}{2}a^2\sqrt{\pi } + \frac{1}{3} a^3\sqrt{\frac{\pi }{6}} - \dots$$
Also, the function $f(\alpha)$ looks almost linear when I plot it. Is there anyway to do this integral, without leaving the answer as an oscillating series?