You basically want to find $x>30$ such that $x^2\equiv26\pmod{55}$.
This is true if and only if $x^2\equiv 26\equiv1\pmod{5}$ and $x^2\equiv 26\equiv4\pmod{11}$.
It is easy to check that the solutions to these congruences larger than 30 are $x=31,46$.
Here is how to solve the congruences. First notice that $x^2\equiv1\pmod 5$ iff $x\equiv\pm 1\pmod5$, and $x^2\equiv4\pmod{11}$ iff $x\equiv\pm2\pmod{11}$.$^{\color{red}1}$ Thus we have four possibilities:
\begin{align*}
x&\equiv 1 \pmod 5 &\text{and}&& x &\equiv 2 \pmod {11}\\
x&\equiv 1 \pmod 5 &\text{and}&& x &\equiv -2 \pmod {11}\\
x&\equiv -1 \pmod 5 &\text{and}&& x &\equiv 2 \pmod {11}\\
x&\equiv -1 \pmod 5 &\text{and}&& x &\equiv -2 \pmod {11}
\end{align*}
In general, to solve $x\equiv a_1\pmod{M_1}$ and $x\equiv a_2\pmod{M_2}$, observe that $$x=a_1M_2y_2+a_2M_1y_1$$
is a solution, where $y_2={M_2}^{-1}\pmod{M_1}$ and $y_1={M_1}^{-1}\pmod{M_2}$. Indeed, if you work $\bmod M_1$, the second term vanishes and the first term simplifies to $a_1$, whereas $\bmod M_2$, the first term vanishes and you're left with $a_2$.$^{\color{red}2}$
Reasoning this way, we get the four solutions
\begin{align*}
x&=1\cdot 11 \cdot 11 + 2\cdot5 \cdot 9 &{}={}& 211\equiv46\pmod{55}\\
x&=1\cdot 11 \cdot 11 + (-2)\cdot5 \cdot 9 &{}={}& 31\\
x&=(-1)\cdot 11 \cdot 11 + 2\cdot5 \cdot 9 &{}={}& -31\equiv24\pmod{55}\\
x&=(-1)\cdot 11 \cdot 11 + (-2)\cdot5 \cdot 9 &{}={}& -211 \equiv 9 \pmod{55},
\end{align*}
two of which are $>30$.
There are loads of resources available online, a quick DuckDuckGo search gave this set of notes on elementary number theory which covers this sort of thing.
$^1$ In general, there are always 2 or 0 solutions to $x^2\equiv a\pmod m$. Read about quadratic residues for more information.
$^2$ This is essentially how you prove the Chinese remainder theorem. Also, finding only one solutions is enough, because linear congruences always have one solution (up to modulo).