I was looking over Ramanujan's first letter to Hardy and came across several series of a similar form:
$$ \sum_{n=1}^{\infty} \frac{n^{13}}{e^{2\pi n}-1} = \frac{1}{24} $$
$$ \sum_{n=1}^{\infty} \frac{\coth(n\pi)}{n^7} = \frac{19 \pi^7}{56700} $$
$$ \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^5 \cosh \left(\frac{(2n+1)\pi}{2} \right)} = \frac{\pi^5}{768} $$
Does anyone know what method(s) Ramanujan used or is likely to have used to compute these, or where I can find this information? More generally I am wondering what are some techniques of summing series in which the denominator of the general term contains an exponential $\pm 1$, with perhaps another exponential or rational function in the numerator? Series of the form
$$ \sum_{n=1}^{\infty} \frac{p(n)}{q(n)} \frac{1}{e^{an} \pm 1} \hspace{0.5cm} \text{or} \hspace{0.5cm} \sum_{n=1}^{\infty} \frac{p(n)}{q(n)} \frac{1}{\cosh(an)} \hspace{0.5cm} \text{or} \hspace{0.5cm} \sum_{n=1}^{\infty} \frac{p(n)}{q(n)} \coth(an) $$
where $p$ and $q$ are polynomials and $a>0$ is a constant.