Find the limit: $$\lim\limits_{n\to\infty} (\sqrt[3]{n^6-6n^4+1} - n^2)$$
I applied the identity: $$a^3 - b^3 = (a-b)(a^2+ab+b^2)$$ by multiplying the numerator and denominator by the complementary part.
$$\lim\limits_{n\to\infty} \frac{(\sqrt[3]{n^6-6n^4+1} - n^2)(\sqrt[3]{(n^6-6n^4+1)^2} + n^2\sqrt[3]{n^6-6n^4+1}+ n^4)}{(\sqrt[3]{(n^6-6n^4+1)^2} + n^2\sqrt[3]{n^6-6n^4+1}+ n^4)}=\lim\limits_{n\to\infty} \frac{n^6-6n^4+1 - n^6}{(\sqrt[3]{(n^6(1-6/n^2+1/n^6))^2} + n^2\sqrt[3]{n^6(1-6/n^2+1/n^6)}+ n^4)}=\lim\limits_{n\to\infty} \frac{-6n^4+1}{(n^4\sqrt[3]{(1-6/n^2+1/n^6)^2} + n^4\sqrt[3]{(1-6/n^2+1/n^6)}+ n^4)}=\lim\limits_{n\to\infty} \frac{-6+1/n^4}{(\sqrt[3]{(1-6/n^2+1/n^6)^2} + \sqrt[3]{(1-6/n^2+1/n^6)}+ 1)}=\frac{-6}{3}=-2$$
Is there any more elegant way to approach the problem?