Using the Riemann-Lebesgue lemma (for regulated functions), I'd like to calculate"
$$\lim_{n \rightarrow \infty} \int^b_af(x)\cos^2(nx)dx.$$
Here's how I try to calculate it:
Using IBP: $\cos^2(nx) \Rightarrow du=-2n\sin(nx)\cos(nx)$ and $f(x)dx=dv \Rightarrow f(x)=v.$
So,
$-2n\cos(nx)\sin(nx)f(x)\bigg|^b_a - 2n\int^b_af(x)2n\cos(nx)dx.$
But now I'm stuck. I'm not sure where to go from here, since it diverges, but it should not I guess. What am I doing wrong? Any help is appreciated!
Update after comment:
$$\int^b_a\cos^2(nx)f(x)dx= \int^b_a\frac{1}{2}(1+\cos(2nx))f(x)dx= \frac{1}{2}\int^b_af(x)dx+\frac{1}{2}\int^b_af(x)\cos(2nx) \to \frac{1}{2}\int^b_af(x)dx \text{ as $n \to \infty$}.$$
So, I assume at some point I'd have to use it
– Apr 02 '20 at 14:42