Can someone please let me know if this looks ok? Thanks in advance!
An irreducible degree $5$ polynomial over $\mathbb{Z}_3$is one such that $f(0)\neq0,f(1)\neq0,f(2)\neq0$.
Take e.g. $p(x)=x^5+x^4+x^3+x^2+1$
$p(0)=1$
$p(1)=2$
$p(2)=1$
And, $$x^2,x^2+1, x^2+x+1\ \nmid\ x^5+x^4+x^3+x^2+1.$$
$\therefore x^5+x^4+x^3+x^2+1$ is an irreducible polynomial over $\mathbb{Z}_3$.