Does $\sum_{i = 1}^{\infty} |\beta_{i}|^2 < \infty$ implies that $A$ satisfies $ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2 < \infty $?
Here is the question I am trying to solve:
Let $A = [a_{ij}]_{i,j = 1}^{\infty}$ be an infinite matrix of real numbers and suppose that, for any $x \in \ell^2,$ the sequence $Ax$ belongs to $\ell^2.$ Prove that the operator $T,$ defined by $T(x) = Ax,$ is a bounded operator on $\ell^2.$
My trial of a solution is:
According to the givens we can define $A : \ell^2 \rightarrow \ell^2 $ by $$A x = A (\xi_{1}, \xi_{2}, ...) = (\beta_{1}, \beta_{2}, ...), $$ i.e., $\beta_{i} = \sum_{j=1}^{\infty} a_{ij} \xi_{j}$
The operator $T$ is bounded as the operator $A$ is bounded and this can be proved as follows:\
$|\beta_{i}| = |\sum_{j=1}^{\infty} a_{ij} \xi_{j}| \leq \sum_{j=1}^{\infty} |a_{ij} \xi_{j}| \leq (\sum_{j=1}^{\infty} |a_{ij}|^2)^{1/2} (\sum_{j=1}^{\infty} |\xi_{j}|^2)^{1/2}$ \
Which implies that for $x = (\xi_{1}, \xi_{2}, ...),$
$\|Ax\|^{2} = \sum_{i=1}^{\infty} |\beta_{i}|^2 \leq \|x\|^2 (\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2).$
But then what? Does $\sum_{i = 1}^{\infty} |\beta_{i}|^2 < \infty$ implies that $A $ satisfies $ \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} |a_{ij}|^2 < \infty $?
I do not know how to complete. could anyone help me in this please?