I need to prove that $n!$ always divides $S=a(a+1)(a+2)…(a+n-1)$.
I can see that developing the expression of $S$ will lead me towards $(a+1)^n$ which is the sum of $\sum_{0}^n\binom{n}{k}a^k$ which is obviously divisible by $n!$
My problem is that I don't see how can I prove it. If you could give me at least a hint, that would be great.