I have done series with $\zeta(2k)$ and $\zeta(k)$, but I have no idea with this one:
$$\sum_{k=1}^\infty \frac{\zeta(2k+1)-1}{k+1}=-\gamma+\log(2)$$
$\gamma$ is the Euler–Mascheroni Constant.
This value was given by Mathematica. Any hint?
I have done series with $\zeta(2k)$ and $\zeta(k)$, but I have no idea with this one:
$$\sum_{k=1}^\infty \frac{\zeta(2k+1)-1}{k+1}=-\gamma+\log(2)$$
$\gamma$ is the Euler–Mascheroni Constant.
This value was given by Mathematica. Any hint?
I solved it myself.
First we note that
$$\sum_{k=1}^\infty \frac{\zeta(2k+1)-1}{k+1} = \sum_{n=2}^\infty \sum_{k=1}^\infty \frac{1}{(k+1)n^{2k+1}}=\sum_{n=2}^\infty \left( -\frac{1}{n}- n\log \left( 1-\frac{1}{n^2}\right)\right)$$
Then $$\begin{aligned} \sum_{k=1}^\infty \frac{\zeta(2k+1)-1}{k+1} &=\sum_{n=2}^\infty \left( -\frac{1}{n}- n\log \left( 1-\frac{1}{n^2}\right)\right) \\ &= \lim_{N\to \infty}\sum_{n=2}^N \left( -\frac{1}{n}- n\log \left( 1-\frac{1}{n^2}\right)\right)\\ &= \lim_{N\to \infty} \left[ -H_N+1-\sum_{n=2}^N n \log(n^2-1)+2\sum_{n=2}^Nn\log(n)\right]\\ &= \lim_{N\to \infty} \left[ -H_N+1-\sum_{n=2}^N \left(n\log(n+1) +n\log(n-1)-2n\log(n)\right)\right] \\ &= \lim_{N\to \infty} \Bigg[ -H_N+1+\log(2)-\sum_{n=3}^{N+1}(n-1)\log(n)-\sum_{n=3}^{N-1}(n+1)\log(n) \\ &\quad+\sum_{n=3}^N2n\log(n)\Bigg] \\ &= \lim_{N\to \infty}\left[-H_N-N\log(N+1)-(N-1)\log(N)+2N\log(N)+1+\log(2) \right]\\ &= \lim_{N\to \infty}\left(- \left(H_N-\log N \right)+\log(2)+1-N\log \left( 1+\frac{1}{N}\right)\right)\\&= \lim_{N\to \infty}\left( - \left(H_N-\log N \right)+\log(2)+\mathcal{O}(N^{-1})\right) \end{aligned}$$
Since $\displaystyle \gamma=\lim_{N\to \infty}(H_N-\log(N))$, we get
$$\sum_{k=1}^\infty \frac{\zeta(2k+1)-1}{k+1} =-\gamma+\log(2)$$
This is similar in some respects, but different in others, from the answer provided by Shobhit Bhatnagar. I also thought a detailed explanation of the steps might prove useful.
First we show a binocular telescoping series:
$$
\begin{align}
\sum_{n=2}^m\log\left(\frac{n^2}{n^2-1}\right)
&=\sum_{n=2}^m\log\left(\frac{n}{n-1}\right)+\sum_{n=2}^m\log\left(\frac{n}{n+1}\right)\tag{1a}\\
&=\log(m)+\log\left(\frac2{m+1}\right)\tag{1b}\\[3pt]
&=\log\left(\frac{2m}{m+1}\right)\tag{1c}
\end{align}
$$
Explanation:
$\text{(1a)}$: $\frac{n^2}{n^2-1}=\frac{n}{n-1}\frac{n}{n+1}$
$\text{(1b)}$: evaluate $2$ telescoping sums
$\text{(1c)}$: simplify
Now we use $(1)$ to compute the sum:
$$
\begin{align}
&\sum_{k=1}^\infty\frac{\zeta(2k+1)-1}{k+1}\\
&=\sum_{k=1}^\infty\frac1{k+1}\sum_{n=2}^\infty\frac1{n^{2k+1}}\tag{2a}\\
&=\sum_{n=2}^\infty\sum_{k=1}^\infty\frac1{k+1}\frac1{n^{2k+1}}\tag{2b}\\
&=\sum_{n=2}^\infty\left(n\log\left(\frac{n^2}{n^2-1}\right)-\frac1n\right)\tag{2c}\\
&=\lim_{m\to\infty}\sum_{n=2}^m\left((m-(m-n))\log\left(\frac{n^2}{n^2-1}\right)-\frac1n\right)\tag{2d}\\
&=\lim_{m\to\infty}\left(m\log\left(\frac{2m}{m+1}\right)-\sum_{n=2}^m\sum_{j=n+1}^m\log\left(\frac{n^2}{n^2-1}\right)-(H_m-1)\right)\tag{2e}\\
&=\lim_{m\to\infty}\left(m\log\left(\frac{2m}{m+1}\right)-\sum_{j=3}^m\sum_{n=2}^{j-1}\log\left(\frac{n^2}{n^2-1}\right)-(H_m-1)\right)\tag{2f}\\
&=\lim_{m\to\infty}\left(m\log\left(\frac{2m}{m+1}\right)-\sum_{j=3}^m\log\left(\frac{2(j-1)}{j}\right)-(H_m-1)\right)\tag{2g}\\
&=\lim_{m\to\infty}\left(m\log\left(\frac{2m}{m+1}\right)-(m-2)\log(2)-\log\left(\frac2m\right)-(H_m-1)\right)\tag{2h}\\[6pt]
&=\lim_{m\to\infty}\left(m\log\left(\frac{m}{m+1}\right)+1+\log(2)+\log(m)-H_m\right)\tag{2i}\\[9pt]
&=\log(2)-\gamma\tag{2j}
\end{align}
$$
Explanation:
$\text{(2a)}$: expand $\zeta(2n+1)-1=\sum\limits_{k=2}^\infty\frac1{k^{2n+1}}$
$\text{(2b)}$: switch order of summation
$\text{(2c)}$: $n\log\left(\frac1{1-1/n^2}\right)-\frac1n=\sum\limits_{k=1}^\infty\frac1{(k+1)n^{2k+1}}$
$\text{(2d)}$: write infinite sum as a limit and $n$ as $m-(m-n)$
$\text{(2e)}$: apply $(1)$, the definition of the Harmonic Numbers, and $\sum\limits_{j=n+1}^m1=m-n$
$\text{(2f)}$: switch the order of summation
$\text{(2g)}$: apply $(1)$
$\text{(2h)}$: evaluate the telescoping sum
$\text{(2i)}$: cancel and combine terms
$\text{(2j)}$: evaluate the limits
$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,} \newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace} \newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack} \newcommand{\dd}{\mathrm{d}} \newcommand{\ds}[1]{\displaystyle{#1}} \newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,} \newcommand{\ic}{\mathrm{i}} \newcommand{\mc}[1]{\mathcal{#1}} \newcommand{\mrm}[1]{\mathrm{#1}} \newcommand{\on}[1]{\operatorname{#1}} \newcommand{\pars}[1]{\left(\,{#1}\,\right)} \newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}} \newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,} \newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}} \newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$ \begin{align} &\bbox[5px,#ffd]{\sum_{k = 1}^{\infty} {\zeta\pars{2k + 1} - 1 \over k + 1}} = \sum_{k = 1}^{\infty}\bracks{\zeta\pars{2k + 1} - 1} \pars{2\int_{0}^{1}t^{2k + 1}\,\,\dd t} \\[5mm] = & \ 2\int_{0}^{1}t\sum_{k = 1}^{\infty}\bracks{% \zeta\pars{2k + 1} - 1}t^{2k}\,\dd t \\[5mm] = & \ 2\int_{0}^{1}t\bracks{% {1 \over 2t} - {\pi \over 2}\cot\pars{\pi t} - {1 \over 1 - t^{2}} + 1 - \gamma - \Psi\pars{1 + t}}\,\dd t \end{align} where I used the A & S ${\bf\color{black}{6.3.15}}$ Digamma Function Identity . The integration yields right away the correct result: $$ \bbx{\color{#44f}{\sum_{k = 1}^{\infty} {\zeta\pars{2k + 1} - 1 \over k + 1} = \ln\pars{2} - \gamma}} \approx 0.1159 $$