Question: For $n\ge 1$, define $a_n=1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\log n$. Prove that $\lim_{n\to\infty} a_n$ exists.
My approach: For any $n\in\mathbb{N},$ $$a_{n}-a_{n+1}=-\frac{1}{n+1}-\ln n+\ln(n+1)\\ =\ln\left(1+\frac{1}{n}\right)-\frac{1}{n+1}.$$
Now we have $$\frac{1}{n+1}<\ln\left(1+\frac{1}{n}\right)<\frac{1}{n}, \forall n\in\mathbb{N}.$$
Therefore, $$\ln\left(1+\frac{1}{n}\right)-\frac{1}{n+1}>0\\ \implies a_{n}-a_{n+1}>0 \\ \implies a_{n}>a_{n+1}, \forall n\in\mathbb{N}.$$
This implies that the sequence $\{a_n\}_{n\ge 1}$ is strictly monotonically decreasing.
Now let us take any $n\in\mathbb{N}$ and approximate the area under the curve $f(x)=\frac{1}{x}, x>0$ represented by the interval $[1,n+1]$.
Now using definite integral we can approximate the area to be $$A_n=\int_1^{n+1}\frac{dx}{x}=\ln(n+1).$$
Now let us approximate the area using the rectangle method and call that area to be $S_n$.
To do the same, let us divide the interval into $n$ equal parts in order to have each interval having length $1$. Thus the $n$ intervals will be $[1,2],[2,3],\cdots, [n,n+1].$ Also, we would need to define a function $g:[1,\infty)\to \mathbb{R}$, such that $$g(x)=\frac{1}{[x]}, \forall x.$$
Therefore, $$S_n=f(1).1+f(2).1+f(3).1+\cdots+f(n).1\\ =g(1).1+g(2).1+g(3).1+\cdots+g(n).1 \\=\left(\frac{1}{1}\right)1+\left(\frac{1}{2}\right)1+\cdots+\left(\frac{1}{n}\right)1\\=\sum_{i=1}^n\frac{1}{i}.$$
Now since $\forall x\ge 1,$ $$[x]\le x\\ \implies \frac{1}{[x]}\ge \frac{1}{x}([x]=x,\text{ holds true only at integer points, hence }\frac{1}{[x]}=\frac{1}{x},\text{ holds true only at integer points})\\ \implies S_n>A_n\\ \implies \sum_{i=1}^n\frac{1}{i}>\ln(n+1).$$
Therefore, we have $$\sum_{i=1}^n\frac{1}{i}>\ln(n+1)>\ln n\\ \implies\sum_{i=1}^n\frac{1}{i}>\ln n\\ \implies \sum_{i=1}^n\frac{1}{i}-\ln n>0 \\ \implies a_n>0, \forall n\in\mathbb{N}.$$
Therefore, the sequence $\{a_n\}_{n\ge 1}$ is monotonically decreasing and bounded below, hence it is convergent, that is $\lim_{n\to\infty}a_n$ exists and is finite.
Is the solution correct and rigorous enough, and does there exist any alternate solution to this problem?