Here is a proof:
Fact 1: It holds that, for all $x \ge 0$,
$$\tanh x \ge \frac{10x^3 + 105x}{x^4 + 45x^2 + 105}.$$
(The proof is given at the end.)
Fact 2: It holds that, for all $u \in [0, 1]$,
$$\tanh u \le \frac{u^3 + 15u}{6u^2 + 15}.$$
(The proof is given at the end.)
Using Fact 1 and $\tanh x \le 1$, we have
$$\sin (\tanh x)
\ge \sin \left(\frac{10x^3 + 105x}{x^4 + 45x^2 + 105}\right). \tag{1}$$
Using Fact 2 and $\sin x \in [0, 1]$, we have
$$\tanh(\sin x) \le \frac{\sin^3 x + 15\sin x}{6\sin^2 x + 15}. \tag{2}$$
Using (1) and (2), it suffices to prove that
$$\sin \left(\frac{10x^3 + 105x}{x^4 + 45x^2 + 105}\right)
\ge \frac{\sin^3 x + 15\sin x}{6\sin^2 x + 15}. \tag{3}$$
Let
$$A := \frac{10x^3 + 105x}{x^4 + 45x^2 + 105}, \quad B := x - \frac{x^3}{3!} + \frac{x^5}{5!}.$$
Using $\sin u \ge u - \frac{u^3}{3!} + \frac{u^5}{5!} - \frac{u^7}{7!}$ for all $u\ge 0$,
we have
$$\sin \left(\frac{10x^3 + 105x}{x^4 + 45x^2 + 105}\right) \ge A - \frac{A^3}{3!} + \frac{A^5}{5!} - \frac{A^7}{7!}. \tag{4}$$
Using $\sin u \le u - \frac{u^3}{3!} + \frac{u^5}{5!}$ for all $u \ge 0$,
noting that $u\mapsto \frac{u^3 + 15u}{6u^2 + 15}$
is strictly increasing on $u\ge 0$, we have
$$\frac{\sin^3 x + 15\sin x}{6\sin^2 x + 15} \le \frac{B^3 + 15B}{6B^2 + 15}. \tag{5}$$
Using (3), (4) and (5), it suffices to prove that
$$A - \frac{A^3}{3!} + \frac{A^5}{5!} - \frac{A^7}{7!}
\ge \frac{B^3 + 15B}{6B^2 + 15}$$
or
$$\frac{x^7 h(x)}{( {x}^{4}+45\,{x}^{2}+105) ^{7} ( {x}^{10}-40{x}^{
8}+640{x}^{6}-4800{x}^{4}+14400{x}^{2}+36000)
}\ge 0 \tag{6}$$
where
\begin{align*}
h(x) &:= -7\,{x}^{36}-1785\,{x}^{34}-181440\,{x}^{32}-8778175\,{x}^{30}-
152703075\,{x}^{28}\\
&\qquad +3298464750\,{x}^{26}+165337839125\,{x}^{24}+
826367130625\,{x}^{22}\\
&\qquad -45036632734375\,{x}^{20}-480887233668750\,{x}^{
18}+2020497175546875\,{x}^{16}\\
&\qquad +5494328646890625\,{x}^{14}+
335334922673625000\,{x}^{12}\\
&\qquad +6005165669281406250\,{x}^{10} +
43232877600909609375\,{x}^{8}\\
&\qquad +170152296290845312500\,{x}^{6} + 390099811698253125000\,{x}^{4}\\
&\qquad +490539329059500000000\,{x}^{2}+
262396086816937500000.
\end{align*}
We can prove that $h(x) \ge 0$ on $[0, \pi/2]$.
Thus, (6) is true.
We are done.
$\phantom{2}$
Proof of Fact 1:
Using $\tanh x = 1 - \frac{2}{\mathrm{e}^{2x} + 1}$, it suffices to prove that
$$f(x) := 2x - \ln \frac{x^4 + 10x^3 + 45x^2 + 105x + 105}{x^4 - 10x^3 + 45x^2 - 105x + 105} \ge 0.$$
We have
$$f'(x) = \frac{2x^8}{x^8 - 10x^6 + 135x^4 - 1575x^2 + 11025} \ge 0.$$
Also, $f(0) = 0$. Thus, we have $f(x) \ge 0$ for all $x \ge 0$.
We are done.
Proof of Fact 2:
Using $\tanh u = 1 - \frac{2}{\mathrm{e}^{2u} + 1}$, it suffices to prove that
$$g(u) := \ln\frac{u^3 + 6u^2 + 15u + 15}{-u^3 + 6u^2 - 15u + 15} - 2u \ge 0.$$
We have
$$g'(u) = \frac{2u^6}{-u^6 + 6u^4 - 45u^2 + 225} \ge 0.$$
Also, $g(0) = 0$. Thus, we have $g(u) \ge 0$ on $[0, 1]$.
We are done.