Asymptotic Expansion via Riemann Sum
Compute the log of the product as a Riemann Sum
$$
\begin{align}
\frac1{n^2}\sum_{k=1}^n k\log(n-k+1)
&=\sum_{k=1}^n\frac{k}{n}\left(\log\left(1-\frac{k}{n}+\frac1n\right)+\log(n)\right)\frac1n\tag{1a}\\
&\sim\int_0^1x\log(1-x)\,\mathrm{d}x+\frac12\log(n)\tag{1b}\\
&=\int_0^1\log(1-x)\,\mathrm{d}\frac{x^2-1}2+\frac12\log(n)\tag{1c}\\
&=-\int_0^1\frac{x+1}2\,\mathrm{d}x+\frac12\log(n)\tag{1d}\\
&=\frac12\log(n)-\frac34\tag{1e}
\end{align}
$$
Thus, the product is asymptotically
$$
\left(\prod_{k=1}^nk!\right)^{1/n^2}\sim e^{-3/4}n^{1/2}\tag2
$$
Therefore, for $x=-1/2$, the limit comes to
$$
\bbox[5px,border:2px solid #C0A000]{\lim_{n\to\infty}\left(\prod_{k=1}^nk!\right)^{1/n^2}n^{-1/2}=e^{-3/4}}\tag3
$$
For $x\lt-1/2$, the limit is $0$.
Asymptotic Expansion via Euler-Maclaurin Sum Formula
As is shown in this answer, we have asymptotically in $n$,
$$
\sum_{k=1}^n k^{-z}
=\zeta(z)+\frac{n^{1-z}}{1-z}+\frac12n^{-z}-\frac{z}{12}n^{-1-z}+O\left(\frac1{n^{3+z}}\right)\tag4
$$
applying $-\frac{\mathrm{d}}{\mathrm{d}z}$:
$$
\begin{align}
\sum_{k=1}^n\log(k)k^{-z}
&=-\zeta'(z)+n^{1-z}\frac{(1-z)\log(n)-1}{(1-z)^2}+\frac12\log(n)n^{-z}\\
&-n^{-1-z}\frac{z\log(n)-1}{12}+O\!\left(\frac{\log(n)}{n^{3+z}}\right)\tag5
\end{align}
$$
Setting $z=0$:
$$
\sum_{k=1}^n\log(k)=\overbrace{\,\,-\zeta'(0)\ }^{\frac12\log(2\pi)}+n(\log(n)-1)+\frac12\log(n)+\frac1{12n}+O\!\left(\frac{\log(n)}{n^3}\right)\tag6
$$
Setting $z=-1$:
$$
\begin{align}
\sum_{k=1}^n\log(k)k
&=\overbrace{-\zeta'(-1)}^{\log(A)-\frac1{12}}+n^2\frac{2\log(n)-1}4+\frac12n\log(n)+\frac{\log(n)+1}{12}\\
&+O\!\left(\frac{\log(n)}{n^2}\right)\tag7
\end{align}
$$
where $A$ is the Glaisher–Kinkelin constant.
Thus,
$$
\begin{align}
\sum_{k=1}^n(n-k+1)\log(k)
&=n^2\frac{2\log(n)-3}4+n\log\left(\frac{\sqrt{2\pi}}en\right)+\frac5{12}\log(n)\\
&+\log\left(\frac{\sqrt{2\pi}}{A}\right)+\frac1{12}+\frac1{12n}+O\!\left(\frac{\log(n)}{n^2}\right)\tag8
\end{align}
$$
and therefore,
$$
\prod_{k=1}^nk!=\frac{\sqrt{2\pi}}{A}e^{1/12}\,\color{#C00}{n^{n^2/2}e^{-3n^2/4}}\color{#090}{\left(\frac{\sqrt{2\pi}}en\right)^n}n^{5/12}\color{#00F}{e^{\frac1{12n}+O\left(\frac{\log(n)}{n^2}\right)}}\tag9
$$
Finally,
$$
\bbox[5px,border:2px solid #C0A000]{\left(\prod_{k=1}^nk!\right)^{1/n^2}=\color{#C00}{n^{1/2}e^{-3/4}}+\color{#090}{O\!\left(\frac{\log(n)}{n^{1/2}}\right)}}\tag{10}
$$
The Glaisher–Kinkelin Constant
Equation $(6)$ is essentially Stirling's Formula:
$$
\prod_{k=1}^nk=\sqrt{2\pi}\,n^{n+1/2}e^{-n}\left(1+\frac1{12n}+O\!\left(\frac1{n^2}\right)\right)\tag{11}
$$
where $\sqrt{2\pi}=e^{-\zeta'(0)}$. This shows that $\zeta'(0)=-\frac12\log(2\pi)$.
Equation $(7)$ says that
$$
\prod_{k=1}^nk^k=A\,n^{n^2/2+n/2+1/12}e^{-n^2/4}\left(1+O\!\left(\frac{\log(n)}{n^2}\right)\right)\tag{12}
$$
where $A=e^{\frac1{12}-\zeta'(-1)}$.
Just as
$$
\sum_{k=1}^n\frac1k=\log(n)+\gamma+O\!\left(\frac1n\right)\tag{13}
$$
is the defining limit for $\gamma$, the Euler-Mascheroni Constant, $(12)$ appears to be the defining limit for $A$, the Glaisher–Kinkelin constant.