Let $\mathbf c \in \mathbb{R}^n$ where $\mathbf c \neq \mathbf 0$ and $\mathbf A \in \mathbb{R}^{m \times n}$. What is the most efficient way to solve the following optimization problem? Even better, does it have an analytical solution?
\begin{equation} \begin{aligned} \max_{\mathbf x \in \mathbb{R}^n} & &&\mathbf c^\text{T}\mathbf x \\ \text{s.t.} & && \mathbf A \mathbf x \geq \mathbf 0, \\ & && \mathbf x\geq \mathbf 0, \\ & && ||\mathbf x||_2 \leq 1 \end{aligned} \end{equation}
I am interested in the case where $\mathbf x = \mathbf c / ||\mathbf c||$ is not a feasible solution for the problem.