Let $X$ be a random variable, then for any $n\in \mathbb{N}, \mathbb{E}^\mathbb{P}(X^n)<\infty.$ Then use Fubini's theorem to prove that
$$ \mathbb{E}^\mathbb{P}(X^n) = n \int_0^\infty t^{n-1}(1-F_X(t))dt - n \int_{-\infty}^0t^{n-1}F_X(t) dt$$
for CDF $F_X$ of $X$ and probability measure $\mathbb{P}$.
We know Fubini's theorem states for stochastic kernel $K$ that:
$$ \mathbb{E}^\mathbb{P}(X) = \int_{\Omega_1} \left(\int_{\Omega_2}X(\omega_1,\omega_2)K(\omega_1,d\omega_2) \right)\mathbb{P}_1(d{\omega_1})$$ where $\mathbb{P}_1$ is a probability measure on $\mathcal{F}_1$. So now, for our case:
$$ \mathbb{E}^\mathbb{P}(X^n) = \int_{\Omega_1} \left(\int_{\Omega_2}X^n(\omega_1,\omega_2)K(\omega_1,d\omega_2) \right)\mathbb{P}_1(d{\omega_1})$$
But i'm not too sure how to rewrite the kernel and get it in the form desired?
I know that $$ \mathbb{E}^\mathbb{P}(X^n) =\int_0^\infty x^nf(x) dx...$$ but i am not sure how to use the above theorem