What is the remainder when $32^{32}$ is divided by 3 ?
MY ATTEMPT
$$32^{32}=(2)^{160}$$
$$32^{32}=(3-1)^{160}$$
$$32^{32}=3M+(-1)^{160}$$
According to binomial expansion $$32^{32}=3M+1$$
Thus the remainder is 1.
Am I correct ?
What is the remainder when $32^{32}$ is divided by 3 ?
MY ATTEMPT
$$32^{32}=(2)^{160}$$
$$32^{32}=(3-1)^{160}$$
$$32^{32}=3M+(-1)^{160}$$
According to binomial expansion $$32^{32}=3M+1$$
Thus the remainder is 1.
Am I correct ?
Yes, that works. Similarly
$$32^{32}=(33-1)^{32}=33M+(-1)^{32}=3\times 11M+1$$
so the remainder is $1$