Please if any one can find the following limit:
Let $b$ be a real number, $b>1$. Compute $$ \lim_{n\to\infty}n\cdot\biggl(\frac1{b^n}+\frac1{b^{2n}}+\frac1{b^{3n}} +\dots+\frac1{b^{(n-1)n}}+\frac1{b^{n^2}}\biggr). $$
Let's squeeze! $$ 0 \leq n\left(\frac{1}{b^n} + \dots + \frac{1}{b^{n^2}}\right) \leq n\times \frac{n}{b^n} \xrightarrow[n\to\infty]{} 0 $$
Edited according to Matt's comment.