$\newcommand{\bbx}[1]{\,\bbox[15px,border:1px groove navy]{\displaystyle{#1}}\,}
\newcommand{\braces}[1]{\left\lbrace\,{#1}\,\right\rbrace}
\newcommand{\bracks}[1]{\left\lbrack\,{#1}\,\right\rbrack}
\newcommand{\dd}{\mathrm{d}}
\newcommand{\ds}[1]{\displaystyle{#1}}
\newcommand{\expo}[1]{\,\mathrm{e}^{#1}\,}
\newcommand{\ic}{\mathrm{i}}
\newcommand{\mc}[1]{\mathcal{#1}}
\newcommand{\mrm}[1]{\mathrm{#1}}
\newcommand{\pars}[1]{\left(\,{#1}\,\right)}
\newcommand{\partiald}[3][]{\frac{\partial^{#1} #2}{\partial #3^{#1}}}
\newcommand{\root}[2][]{\,\sqrt[#1]{\,{#2}\,}\,}
\newcommand{\totald}[3][]{\frac{\mathrm{d}^{#1} #2}{\mathrm{d} #3^{#1}}}
\newcommand{\verts}[1]{\left\vert\,{#1}\,\right\vert}$
\begin{align}
\mrm{I}\pars{p} & =
\bbox[5px,#ffd]{\left.\int_{0}^{\infty}{\sin^{2}\pars{px} \over x\pars{\expo{2x} - 1}}
\,\dd x\,\right\vert_{\large\ p\ \not=\ 0}} =
\int_{0}^{\infty}{\sin^{2}\pars{px/2} \over \expo{x} - 1}\,{\dd x \over x}
\\[5mm] & =
{1 \over 2}\int_{0}^{\infty}{1 - \cos\pars{px} \over
\expo{x} - 1}\,{\dd x \over x} =
{1 \over 2}\,\Re\int_{0}^{\infty}{1 + \ic px - \expo{\ic px} \over
\expo{x} - 1}\,{\dd x \over x}
\\[5mm] & =
{1 \over 2}\,\Re\int_{0}^{\infty}{\expo{-x} + \ic px\expo{-x} -
\expo{-\pars{1 - \ic p}x} \over 1 - \expo{-x}}\,{\dd x \over x}
\\[5mm] & \stackrel{\large\,\,\,\,\,\,\, t\ =\ \expo{-x}}{=}\,\,\,
-\,{1 \over 2}\,\Re\int_{0}^{1}{1 - \ic p\ln\pars{t} -
t^{-\ic p} \over 1 - t}\,{\dd t \over \ln\pars{t}}
\\[5mm] & =
-\,{1 \over 2}\,\Re\int_{0}^{1}{1 - \ic p\ln\pars{t} -
t^{-\ic p} \over 1 - t}\,\pars{-\int_{0}^{\infty}t^{\,\xi}\,\dd\xi}\dd t
\\[5mm] & =
{1 \over 2}\,\Re\int_{0}^{\infty}\int_{0}^{1}{t^{\xi} - \ic pt^{\xi}\ln\pars{t} -
t^{\xi - \ic p} \over 1 - t}\,\dd t\,\dd\xi
\\[5mm] & =
{1 \over 2}\,\Re\int_{0}^{\infty}\bracks{%
\int_{0}^{1}{1 - t^{\xi - \ic p} \over 1 - t}\,\dd t -
\int_{0}^{1}{1 - t^{\xi} \over 1 - t}\,\dd t -
\ic p\int_{0}^{1}{t^{\xi}\ln\pars{t} \over 1 - t}\,\dd t}\dd\xi
\\[5mm] & =
{1 \over 2}\,\Re\int_{0}^{\infty}\bracks{%
\Psi\pars{\xi - \ic p + 1} - \Psi\pars{\xi + 1}}\dd\xi
\\[5mm] & =
{1 \over 2}\,\Re\lim_{\xi \to \infty}
\ln\pars{\Gamma\pars{\xi + 1 - \ic p} \over \Gamma\pars{\xi + 1}} -
{1 \over 2}\,\Re\ln\pars{\Gamma\pars{1 - \ic p} \over \Gamma\pars{1}}
\\[5mm] & =\
\overbrace{{1 \over 2}\lim_{\xi \to \infty}
\ln\pars{\verts{\Gamma\pars{\xi + 1 - \ic p} \over
\Gamma\pars{\xi + 1}}}}^{\ds{=\ 0\,,\ \mbox{See}\ \color{red}{below}}}\ -\
{1 \over 4}\ln\pars{\Gamma\pars{1 - \ic p}\Gamma\pars{1 + \ic p}}
\\[5mm] & =
-\,{1 \over 4}
\ln\pars{\Gamma\pars{1 - \ic p}\ic p\Gamma\pars{\ic p}} =
-\,{1 \over 4}
\ln\pars{\ic p\,{\pi \over \sin\pars{\pi\ic p}}}
\\[5mm] & =
\bbx{\large{{1 \over 4}\ln\pars{\sinh\pars{\pi p} \over \pi p}}}
\\ &
\end{align}
$\color{red}{\mbox{Note that}}$
\begin{align}
&\verts{\Gamma\pars{\xi + 1 - \ic p} \over
\Gamma\pars{\xi + 1}} =
\verts{\pars{\xi - \ic p}! \over \xi!}
\,\,\,\stackrel{\mrm{as}\ \xi\ \to\ \infty}{\sim}\,\,\,
\verts{\root{2\pi}\pars{\xi - \ic p}^{\xi - \ic p + 1/2}
\expo{-\xi + \ic p} \over \root{2\pi}\xi^{\xi + 1/2}\expo{-\xi}}
\\[5mm] & \stackrel{\mrm{as}\ \xi\ \to\ \infty}{\sim}\,\,\,
\verts{\xi^{\xi - \ic p + 1/2}\pars{1 - \ic p/\xi}^{\xi}
\over \xi^{\xi + 1/2}}
\,\,\,\stackrel{\mrm{as}\ \xi\ \to\ \infty}{\sim}\,\,\,
\verts{\xi^{-\ic p}\expo{-\ic p}} =
\verts{\expo{-\ic p\ln\pars{\xi}}\expo{-\ic p}} = {\Large 1}
\end{align}