Looking at the following GCD proof, I'm unsure I understand why line 4 and 8 are necessarily true. How is it that $\text{gcd}(a,b) \leq \text{gcd}(b,r)$?
$$\begin{align} &\text{gcd}(a,b) \setminus a \wedge \text{gcd}(a,b) \setminus b \tag{1}\\ &\text{gcd}(a,b) \setminus (a - qb) \tag{2}\\ &\text{gcd}(a,b) \setminus r \tag{3}\\ &\text{gcd}(a,b) \leq \text{gcd}(b,r) \tag{4}\\ \\ &\text{gcd}(b,r) \setminus b \wedge \text{gcd}(b,r) \setminus r \tag{5}\\ &\text{gcd}(b,r) \setminus (qb+r) \tag{6}\\ &\text{gcd}(b,r) \setminus a \tag{7}\\ &\text{gcd}(b,r) \leq \text{gcd}(a,b) \tag{8}\\ \\ &\text{gcd}(a,b) = \text{gcd}(b,r) \tag{9} \end{align}$$
Edit: Please do not edit the question to change $\setminus$ to |. Both are accepted notation, even if $\setminus$ is less common.