The result is true for when $n=0.$ Assume the result for $n,$ and I will show the result for $n+1.$
\begin{equation}
\begin{split}
\sum_{k=0}^{n+1} {n+k+1\choose k}\Big(\frac{1}{2}\Big)^k
&= 1+\sum_{k=1}^{n+1} {n+k+1\choose k}\Big(\frac{1}{2}\Big)^k\\
&=1+\sum_{k=1}^{n+1} {n+k\choose k}\Big(\frac{1}{2}\Big)^k+\sum_{k=1}^{n+1} {n+k\choose k-1}\Big(\frac{1}{2}\Big)^k\\
&=(2^k+{2n+1\choose n+1}\Big(\frac12\Big)^{n+1})+\frac12\sum_{k=0}^n{n+k+1\choose k}\Big(\frac{1}{2}\Big)^k\\
&=2^k+\frac12\sum_{k=0}^{n+1} {n+k+1\choose k}\Big(\frac{1}{2}\Big)^k,\\
\end{split}
\end{equation}
so $\sum_{k=0}^{n+1}{n+k+1\choose k}\Big(\frac{1}{2}\Big)^k=2^{n+1}.$