-1

Prove that
$\sum_{k=0}^n {n+k\choose k}\Big(\frac{1}{2}\Big)^k = 2^n.$

I tried doing the following:

${n\choose 0}+\frac{n+1\choose 1}{2}+\frac{n+2\choose 2}{4}+\dots+\frac{n+n\choose n}{2^n}=2^n$
But then I got stuck... Can someone please provide me a hint (maybe I am approaching it the wrong way?)

1 Answers1

0

The result is true for when $n=0.$ Assume the result for $n,$ and I will show the result for $n+1.$

\begin{equation} \begin{split} \sum_{k=0}^{n+1} {n+k+1\choose k}\Big(\frac{1}{2}\Big)^k &= 1+\sum_{k=1}^{n+1} {n+k+1\choose k}\Big(\frac{1}{2}\Big)^k\\ &=1+\sum_{k=1}^{n+1} {n+k\choose k}\Big(\frac{1}{2}\Big)^k+\sum_{k=1}^{n+1} {n+k\choose k-1}\Big(\frac{1}{2}\Big)^k\\ &=(2^k+{2n+1\choose n+1}\Big(\frac12\Big)^{n+1})+\frac12\sum_{k=0}^n{n+k+1\choose k}\Big(\frac{1}{2}\Big)^k\\ &=2^k+\frac12\sum_{k=0}^{n+1} {n+k+1\choose k}\Big(\frac{1}{2}\Big)^k,\\ \end{split} \end{equation}

so $\sum_{k=0}^{n+1}{n+k+1\choose k}\Big(\frac{1}{2}\Big)^k=2^{n+1}.$

Kenta S
  • 16,151
  • 15
  • 26
  • 53