Does the sum $\sum_{i=1}^{n}\frac{2^{\alpha_1+\ldots+\alpha_i}}{3^iv_1+\sum_{j=1}^{i}3^{j-1}2^{\alpha_1+\ldots+\alpha_n-\sum_{l>i-j}\alpha_l}}$ for a positive odd integer $v_1$ and a sequence of positive integers $\alpha_i$ has a limit?
Let us take for example the Collatz sequence $v_1=17$, $v_2=13$, $v_3=5$, $v_4=1$.
We can calculate $v_{n+1}=\frac{3^nv_1+\sum_{j=1}^{n}3^{j-1}2^{\alpha_1+\ldots+\alpha_n-\sum_{l>n-j}\alpha_l}}{2^{\alpha_1+\ldots+\alpha_n}}$.
For the above-given example $v_1=17$, $\alpha_1=2$, $\alpha_2=3$ and $\alpha_3=4$ finally $v_4$ results in $1$: $v_4=v_{3+1}=1$
Since we know that a product $\prod_{i=1}^{n}(1+\frac{1}{3v_i})$ converges towards a limit, if the sum $\sum_{i=1}^{n}(\frac{1}{3v_i})$ is limited. We found out empirically that the product for any Collatz sequence stays below 2.
The idea is to show that the sum $\sum_{i=1}^{n+1}(\frac{1}{3v_i})=\frac{1}{3v_1}+\sum_{i=1}^{n}\frac{1}{3v_{i+1}}$ converges.