This is the first time I came across the problem of finding integral of $\propto$. I have a joint distribution $$f_{X,Y}(x,y) \propto \exp\left(13xy - 94x^2 - \frac{1}{2}y^2\right)$$ where $ -\infty< x <\infty, -\infty< y <\infty $
I attempted to find $f_X(x)$ as follows: \begin{align*} f_X(x) &\propto \int_{-\infty}^\infty e^{13xy - 94x^2 - \frac{1}{2}y^2}{\rm d}y\\ &\propto \int_{-\infty}^\infty e^{-\frac{1}{2}(y - 13x)^2 - \frac{19x^2}{2}}{\rm d}y\\ &\propto \frac{1}{e^{\frac{19x^2}{2}}} \int_{-\infty}^\infty e^{-\frac{u^2}{2}}{\rm d}u \end{align*} where $ u = (y - 13x)^2 $
Similarly, I derived $$ f_Y(y) \propto \frac{1}{e^{\frac{19x^2}{376}}} \int_{-\infty}^\infty e^{-u^2}{\rm d}u $$ where $ u = \sqrt{94}x - \frac{13y}{2\sqrt{94}} $
Could you please show me how to proceed to the destination solutions? Thanks in advance.