Evaluate $$\sum_{r=1}^{\infty} \frac{1 \cdot 3 \cdots (2r-1)}{r!}\left(\frac{2}{5} \right)^{r}$$
Let $$y=x + \frac{1 \cdot 3 \cdot}{2!} x^2 + \frac{1 \cdot 3 \cdot 5}{3!} x^3+\ldots$$ be the given expression.(replacing $2/5$ with $x$)
After some manipulations,
$$y+1=(1-2x)\frac{dy}{dx}$$
Integrating and substituting $x=\dfrac{2}{5}$, we get $y=\sqrt{5}-1$.
Is there any other way to solve this question?