"$\Rightarrow$" The Banach-Steinhaus part is fine - though maybe be more explicit about it. Regarding the convergence: Recall the definition of weak convergence. Since we are considering $\ell_p$, Riesz-Fischer tells us that
$$ \forall y \in \ell_q: \vert \langle y,x^n \rangle - \langle y, x \rangle \vert = \vert \sum_{i = 1}^{\infty} y_i x^n_i - \sum_{i = 1}^{\infty} y_i x_i \vert \rightarrow 0, ~~~ n \rightarrow \infty$$
Hence in particular this is true for $\delta^m_i \in \ell_q$, which is $1$ precisely when $m = i$ and $0$ otherwise. Then we have
$$ \vert \langle \delta^m_i,x^n \rangle - \langle \delta^m_i, x \rangle \vert = \vert \sum_{i = 1}^{\infty} \delta^m_i x^n_i - \sum_{i = 1}^{\infty} \delta^m_i x_i \vert = \vert x^n_m - x_m \vert \rightarrow 0, ~~~ n \rightarrow \infty ~~.$$
What you wrote down will not work as you need to assume $m \in \mathbb{N}$ i.e. $\Vert x_m \Vert_p + \Vert x_m \Vert_p$ is constant. Also, note that $x_m$ is an element of $\mathbb{R}$ (or whatever your values your sequences take)
"$\Leftarrow$" None of your assumptions give strong convergence (i.e. convergence in norm)- what you have is pointwise convergence.
A more general proof of this direction can be found here, but I'll give a brief argument:
Assume $\Vert x^n \Vert_p < M$ for some $M>0$. Let $y \in \ell_q$ and $\varepsilon > 0$ be arbitrary. Then since $\{\delta^m_i : m \in \mathbb{N}\}$ is dense in $\ell^p$, we may choose $g = \sum_{i \in \{i_1, \ldots, i_k\}} \delta^m_i$ some finite linear combination of the deltas s.t. $\Vert y - g \Vert < \frac{\varepsilon}{3M}$ and $\Vert y - g \Vert < \frac{\varepsilon}{3 \Vert x \Vert}$.
Now choose $N \in \mathbb{N}$ s.t. $\forall n > N$ we have $\vert x^n_m - x _m\Vert < \frac{\varepsilon}{3n}$. Then for any $n > N$ we have
$$ \begin{align} \vert y(x^n) - y(x) \vert & \leq \vert y(x^n) - g(x^n) \vert + \vert g(x^n) - g(x) \vert + \vert g(x) - y(x) \vert \\
& \leq \Vert y - g \Vert_q \Vert x^n \Vert_p + \vert \sum_{m \in \{m_1, \ldots, m_k\}} x^n_{m_k} - x_{m_k}\vert + \Vert g - y\Vert_q \Vert x \Vert_p \\
& \leq \Vert y - g \Vert_q \Vert x^n \Vert_p + n \max_{\{m_1, \ldots, m_k\}} \vert x^n_{m_k} - x_{m_k}\vert + \Vert g - y\Vert_q \Vert x \Vert_p \\
& <\frac{\varepsilon}{3 M} \Vert x^n \Vert_p + n\frac{\varepsilon}{3n} + \frac{\varepsilon}{3 \Vert x \Vert_p} \Vert x \Vert_p\\
& < \varepsilon
\end{align}$$
The essence of this argument is that the condition $\forall m \in \mathbb{N}: \vert x^n_m - x_m \vert$ is precisely weak convergence for a dense set of functionals. Then it is only needed that $(x^n)_{n \in \mathbb{N}}$ has a uniform upper bound, which is crucial in bounding the term $\vert y(x^n) - g(x^n) \vert$.